Abstract

This paper considers the robust-optimal design problems of output feedback controllers for linear systems with both time-varying elemental (structured) and norm-bounded (unstructured) parameter uncertainties. A new sufficient condition is proposed in terms of linear matrix inequalities (LMIs) for ensuring that the linear output feedback systems with both time-varying elemental and norm-bounded parameter uncertainties are asymptotically stable, where the mixed quadratically-coupled parameter uncertainties are directly considered in the problem formulation. A numerical example is given to show that the presented sufficient condition is less conservative than the existing one reported recently. Then, by integrating the hybrid Taguchi-genetic algorithm (HTGA) and the proposed LMI-based sufficient condition, a new integrative approach is presented to find the output feedback controllers of the linear systems with both time-varying elemental and norm-bounded parameter uncertainties such that the control objective of minimizing a quadratic integral performance criterion subject to the stability robustness constraint is achieved. A design example of the robust-optimal output feedback controller for the AFTI/F-16 aircraft control system with the time-varying elemental parameter uncertainties is given to demonstrate the applicability of the proposed new integrative approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call