Abstract

We investigate quasi-Monte Carlo integration using higher order digital nets in weighted Sobolev spaces of arbitrary fixed smoothness $\alpha \in \mathbb{N}$, $\alpha \ge 2$, defined over the $s$-dimensional unit cube. We prove that randomly digitally shifted order $\beta$ digital nets can achieve the convergence of the root mean square worst-case error of order $N^{-\alpha}(\log N)^{(s-1)/2}$ when $\beta \ge 2\alpha$. The exponent of the logarithmic term, i.e., $(s-1)/2$, is improved compared to the known result by Baldeaux and Dick, in which the exponent is $s\alpha /2$. Our result implies the existence of a digitally shifted order $\beta$ digital net achieving the convergence of the worst-case error of order $N^{-\alpha}(\log N)^{(s-1)/2}$, which matches a lower bound on the convergence rate of the worst-case error for any cubature rule using $N$ function evaluations and thus is best possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.