Abstract

To execute a trade, participants in electronic equity markets may choose to submit limit orders or market orders across various exchanges where a stock is traded. This decision is influenced by characteristics of the order flows and queue sizes in each limit order book, as well as the structure of transaction fees and rebates across exchanges. We propose a quantitative framework for studying this order placement problem by formulating it as a convex optimization problem. This formulation allows the study of how the optimal order placement decision depends on the interplay between the state of order books, the fee structure, order flow properties and the aversion to execution risk. In the case of a single exchange, we derive an explicit solution for the optimal split between limit and market orders. For the general case of order placement across multiple exchanges, we propose a stochastic algorithm that computes the optimal routing policy and study the sensitivity of the solution to various parameters. Our algorithm does not require an explicit statistical model of order flow but exploits data on recent order fills across exchanges in the numerical implementation of the algorithm to acquire this information through a supervised learning procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.