Abstract

In usual boundary elements methods, the mixed Dirichlet-Neumann problem in a plane polygonal domain leads to difficulties because of the transition of spaces in which the problem is well posed. We build collocation methods based on a mixed single and double layer potential. This indirect method is constructed in such a way that strong ellipticity is obtained in high order spaces of Sobolev type. The boundary values of this potential define a bijective boundary operator if a modified capacity adapted to the problem is not 1. This condition is analogous to the one met in the use of the single layer potential, and is not a problem in practical computations. The collocation methods use smoothest splines and known singular functions generated by the corners. If splines of order 2m - 1 are used, we get quasi-optimal estimates in H m -norm The order of convergence is optimal in the sense that it is fixed by the approximation properties of the first missed singular function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.