Abstract

This paper investigates an effective and practical method to define optimal operational scheduling of available Partially Closed Valves (PCVs) for pressure management in Water Distribution Networks (WDNs). The aim is to determine which of the valves and how much does it is opened every hour of the day to maximize the Network Pressure Reliability Index (NPRI) of WDNs. The Particle Swarm Optimization (PSO) algorithm is applied to find which of valves needs adjustment by using the Pipe Closure Index (PCI) in a calibration process, and the Ant Colony Optimization (ACO) algorithm is used to find the setting of valves. The developed models are prepared by linking the optimization algorithm with the hydraulic simulator (EPANET) in the MATLAB. A sample network and real WDN are used to validate the proposed method. The comparison of the results for the real WDN indicates that by using the proposed method, the average reliability index increases up to 32.6%, and the average leakage rate decreases up to 31.7%. So the proposed method is effective in increasing the reliability and decreasing the leakage rate of the network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.