Abstract
Abstract This paper proposes optimal operational planning of energy plants considering (OPEP) renewable energy (RE)’s uncertainty. In recent years, global warming is exacerbated by the increase in the carbon dioxide’s emission which belongs to greenhouse gases. Utilization of renewable energies is necessary in order to reduce its emissions. RE can also be utilized as emergency power supplies for Business Continuity Planning (BCP). Since the deterministic operational planning problem of energy plants is one of mixed-integer nonlinear optimization programming (MINLP) problems, conventional mathematical programming cannot solve it easily. Hence, it has been solved by various evolutionary computation techniques such as particle swarm optimization (PSO), differential evolutionary PSO (DEEPSO), modified brain storm optimization (MBSO), and global-best brain storm optimization (GBSO). In addition, considering uncertainty of RE outputs, Monte Carlo simulation should be utilized. The proposed Monte Carlo simulation based method using GBSO is compared with the deterministic GBSO based method. It was verified the proposed Monte Carlo simulation based method using GBSO can consider uncertainty of renewable energies appropriately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.