Abstract

This paper proposes a High Performance Cuckoo Search Algorithm (HPCSA) for determining suitable operation parameters of the optimal wind-hydro-thermal system scheduling (OWHTSS) problem. The objective of the problem is to reach the lowest electricity generation cost of thermal power plants (TPPs) and wind power plants (WPPs) while exactly meeting all constraints of TPPs, WPPs and hydroelectric plants (HEPs). HPCSA is formed by applying improvements on the two main techniques of original Cuckoo Search Algorithm (CSA) to cover CSA’ drawbacks such as searching random solution spaces, always using two random solutions for getting a jumping step and suffering from slow convergence. HPCSA accompany with CSA, Adaptive CSA (ACSA), Snap-Drift CSA (SDCSA) and Water Cycle Algorithm (WCA) are run for solving four test systems in which the largest and complicated system is comprised of four TPPs, four HEPs and two WPPs with the uncertain wind feature. The result comparisons indicate that HPCSA is superior to applied and previous methods, and other modified versions of CSA in the literature in terms of better cost, higher stability, faster search ability and higher success rate. As a result, it leads to a conclusion that HPCSA is a strong metaheuristic algorithm for solving OWHTSS problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.