Abstract
To address the challenges faced by an integrated energy system (IES) during independent operation, such as high operating costs and significant uncertainties in electricity prices and source-load, a cooperative operation method based on a three-level Nash three-stage robust optimization is proposed for the Multi-integrated energy system (MIES). Firstly, the IES is enhanced by incorporating the coupling of multiple energy flows (electricity, heat, hydrogen, and gas) through the integration of an electric hydrogen module (EHM) and gas hydrogen doping combined heat and power (GHDCHP). Secondly, a Nash-Stackelberg-Nash game framework is constructed using game theory to accurately capture the interaction characteristics between the MIES and the Multi-PV prosumer (MPVP). Subsequently, a three-stage robust optimization model is developed for the IES, taking into full consideration the multiple uncertainties in electricity prices and source-load. This model is coupled with the Nash-Stackelberg-Nash game to propose a three-level Nash three-stage robust optimization model. Additionally, an ADMM algorithm coupling AOP-Looped C&CG is proposed to effectively solve the model. Finally, the effectiveness of the proposed method is validated through numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.