Abstract

In this paper, we consider the optimal operations of a thermal system for heat source and air conditioning system with a thermal storage tank using nonlinear programming. Firstly, we develop the mathematical model of the system components by applying the energy and mass balance principles. Secondly, the static balance of the system model is validated by the operational data. Thirdly, by applying the nonlinear programming method, IPOPT (Interior Point OPTimizer), to the mathematical model, we show the optimal operations of a thermal system under variable conditions of chilled water temperature, such as the number of person, heat generating equipment, outdoor and indoor air conditions. Finally, dynamic simulation results showed that, the variable set points of the chilled water temperature for thermal storage tank have an effect on reducing the running cost of a day.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.