Abstract

In this paper, a stochastic approach for the operation of active distribution networks within a joint active and reactive distribution market environment is proposed. The method maximizes the social welfare using market based active and reactive optimal power flow (OPF) subject to network constraints with integration of demand response (DR). Scenario-Tree technique is employed to model the uncertainties associated with solar irradiance, wind speed and load demands.It further investigates the impact of solar and wind power penetration on the active and reactive distribution locational prices (D-LMPs) within the distribution market environment. A mixed-integer linear programming (MILP) is used to recast the proposed model, which is solvable using efficient off-the shelf branch-and cut solvers. The 16-bus UK generic distribution system is demonstrated in this work to evaluate the effectiveness of the proposed method.Results show that DR integration leads to increase in the social welfare and total dispatched active and reactive power and consequently decrease in active and reactive D-LMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call