Abstract

In this work, a custom dynamic mathematical model of an industrial vertical-cylindrical type natural gas fired natural draft heater is developed using gPROMS® ProcessBuilder®. The integrated model comprises sub-models for each of the distinct sections of the fired heater which are connected by mass and energy flows. The temperature profiles of the tubular coils and the process fluid, a heat transfer fluid (HTF) are modelled using the distributed parameter system (DPS) in the axial direction (1D). The flue gas temperature in each section is modelled using the lumped parameter approach. Published empirical methods and correlations are used for estimating some unknown model parameters. The resulting model is a system of partial differential-algebraic equations (PDAEs) and serves as a basis for conducting an optimisation study to aid decision-making and to identify the best operating conditions within the specified constraints that minimise the daily operational costs. Through process simulation studies, the model predictions are adjusted to closely approximate collected actual plant data. It is demonstrated through the optimisation study that significant reduction in fuel gas consumption can be achieved compared to the current operating consumption levels. The developed models can be extended for use by other hydrocarbon processing plant operators with slight modifications, by specifying geometric parameters, HTF thermophysical properties, fuel gas composition and properties, among others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call