Abstract

In profit-based unit commitment, the objective of programming is to maximize profit and optimize generation. Practically, the gross profit depends not only on the revenue but also on the total expenditures. In this article, an efficient algorithm is suggested to assess the effect of uncertainties in determining 24-hour optimal strategy of a microgrid (MG) containing wind farms, photovoltaic, fuel cell, combined heat and power units, boiler, and energy storage devices (ESDs). The optimization problem is presented to determine the optimal points for the energy resources generation and to maximize the expected profit considering demand response (DR) programs and uncertainties. The uncertainties include wind speed, photovoltaic power generation (PVPG), market price, power, and thermal load demand. For modeling uncertainties, an effort has been made to predict uncertainties through the hybrid method of wavelet transform (WT)-artificial neural network (ANN)-imperialist competitive algorithm (ICA). In this study, three cases are assessed to confirm the performance of the proposed method. In the first case study, programing MG is isolated from the grid. In the second case study, which is grid-connected mode the WT-ANN-ICA and WT-ANN uncertainties predictions methods are compered. In the third case, which is grid-connected mode the effect of DR programs on the expected profit of energy resources is assessed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call