Abstract

We describe a procedure to maximize carbon (C) sequestration and apply it to a 428 000 ha industrial forest management area in northern New Brunswick, Canada. Stand-specific C yield tables and C residency periods in harvested wood products were used as inputs to a linear programming model to maximize on- and off-site C sequestration in forest land. Five management scenarios were evaluated. A scenario that maximized on-site forest C sequestration for 80 years, respecting “business-as-usual” harvest constraints, projected an extra 3 t C·ha–1 across the forest management area compared with the business-as-usual scenario, with net C storage potential (forest C + forest C in products – emissions produced from decayed wood products) resulting in approximately 1 Mt C. A scenario to double softwood harvest led to a projected decrease in the forest C pool by approximately 5 t C·ha–1 from 2007 to 2082 and overall storage decrease of almost 2 Mt C from the base run. Other scenarios to increase or decrease harvest volumes by 10% resulted in overall C storage increases of 1.6 Mt C and almost 2.7 Mt C, respectively, above the base run. All scenarios resulted in net sinks of C after the 80 year simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.