Abstract

Due to the limited battery capacity in mobile devices, the concept of mobile cloud computing (MCC) is proposed where some applications are offloaded from the local device to the cloud for higher energy efficiency. The portion of applications or tasks to be offloaded for remote processing should be judiciously determined. In this paper, the problem of optimal task dispatch, transmission, and execution in the MCC system is considered. Dynamic voltage and frequency scaling (DVFS) is applied to the local mobile processor, whereas the RF transmitter of the mobile device can choose from multiple modulation schemes and bit rates. The power consumptions of the mobile components that cannot be directly controlled, e.g., the touch screen, GPU, audio codec, and I/O ports, are also accounted for through capturing their correlation with the mobile processor and RF transmitter. Finally, a realistic and accurate battery model is adopted in this work in order to estimate the battery energy loss rate in a more accurate way. This paper presents a semi-Markov decision process (SMDP)-based optimization framework, with the actions of different DVFS levels and modulation schemes/transimission bit rates and the objective of minimizing both the energy drawn from the battery and the average latency in request servicing. This paper derives the optimal solution, including the optimal DVFS policy, offloading rate, and transmission scheme, using linear programming combined with a heuristic search. Experiments are conducted on Qualcomm Snapdragon Mobile Development Platform MSM8660 to find the correlations among the power consumptions of the CPU, RF components, and other components. Simulation results show that the proposed optimal solution consistently outperforms some baseline algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.