Abstract

The paper considers parametric optimization problems for the steel bar structures formulated as nonlinear programming ones with variable unknown cross-sectional sizes of the structural members, as well as initial prestressing forces introduced into the specified redundant members of the structure. The system of constraints covers load-bearing capacity constraints for all the design sections of the structural members subjected to all the design load combinations at ultimate limit state, as well as displacement constraints for the specified nodes of the bar system, subjected to all design load combinations at serviceability limit state. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the parametric optimization problem. A numerical technique to determine the optimal number of the redundant members to introduce the initial prestressing forces has been offered for high-order statically indeterminate bar structures. It reduces the dimension for the design variable vector of unknown initial prestressing forces for considered optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.