Abstract

The aim of this study was to determine the optimal number of coplanar and noncoplanar external beams in the setting of stereotactic body radiotherapy (SBRT). Spherical targets were delineated within 2 separate extracranial sites, the lung and liver, with diameters varying from 2 cm to 7 cm to cover the range of volumes used in SBRT. Treatment plans were created for all target volumes using 5 to 15 geometrically optimized coplanar and noncoplanar conformal beams. Dose gradient and normal tissue complication probability (NTCP) were evaluated for each set of beam configurations and for each target size. For all lung and liver target volumes, the dose gradient improved with an increase in beam number from 5 to 15 for both coplanar and noncoplanar beam configurations. NTCP decreased as the beam number increased from 5 to 9 beams for all target sizes for both coplanar and noncoplanar beams. There is no significant improvement in NTCP when more than 9 beams were used for treatment planning regardless of target size. Based on dosimetric criteria, the optimal number of external beams is 13 to 15 for SBRT using either coplanar or noncoplanar beam bouquets. Simple biologic models indicate that the optimal number of beams is 9 for SBRT of lung and liver lesions >2 cm, whereas smaller lesions may benefit from plans using up to 13 beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call