Abstract

A process by which a reduced-dimensionality feature vector can be extracted from a high-dimensionality signal vector and then vector quantized with lower complexity than direct quantization of the signal vector is discussed. In this procedure, a receiver must estimate, or interpolate, the signal vector from the quantized features. The task of recovering a high-dimensional signal vector from a reduced-dimensionality feature vector can be viewed as a generalized form of interpolation or prediction. A way in which optimal nonlinear interpolation can be achieved with negligible complexity, eliminating the need for ad hoc linear or nonlinear interpolation techniques, is presented. The range of applicability of nonlinear interpolative vector quantization is illustrated with examples in which optimal nonlinear estimation from quantized data is needed for efficient signal compression.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.