Abstract

Abstract GPS radio occultation remote sensing of the neutral atmosphere requires ionospheric correction of L1 and L2 signals. The ionosphere-corrected variables derived from radio occultation signals—such as the phase, Doppler, and bending angle—are affected by small-scale ionospheric effects that are not completely eliminated by the ionospheric correction. They are also affected by noise from mainly the L2 signal. This paper introduces a simple method for optimal filtering of the L4 = L1 − L2 signal used to correct the L1 signal, which minimizes the combined effects of both the small-scale ionospheric residual effects and L2 noise on the ionosphere-corrected variables. Statistical comparisons to high-resolution numerical weather models from the European Centre for Medium-Range Weather Forecasts (ECMWF) validate that this increases the accuracy of radio occultation inversions in the stratosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call