Abstract

We present a source convergence acceleration method for Monte Carlo criticality calculations. The method gradually increases the neutron population size over the successive inactive as well as active criticality cycles. This helps to iterate the fission source faster at the beginning of the simulation where the source may contain large errors coming from the initial cycle; and, as the neutron population size grows over the cycles, the bias in the source gets reduced. Unlike previously suggested acceleration methods that aim at optimisation of the neutron population size, the new method does not have any significant computing overhead, and moreover it can be easily implemented into existing Monte Carlo criticality codes. The effectiveness of the method is demonstrated on a number of PWR full-core criticality calculations using a modified SERPENT 2 code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.