Abstract

The exact controllability can be mapped to the problem of maximum algebraic multiplicity of all eigenvalues. In this paper, we focus on the exact controllability of deterministic complex networks. First, we explore the eigenvalues of two famous networks, i.e. the comb-of-comb network and the Farey graph. Due to their special structure, we find that the eigenvalues of each network are mutually distinct, showing that these two networks are optimal networks with respect to exact controllability. Second, we study how to optimize the exact controllability of a deterministic network. Based on the spectral graph theory, we find that reducing the order of duplicate sets or co-duplicate sets which are two special vertex subsets can decrease greatly the exact controllability. This result provides an answer to an open problem of Li et al. [X. F. Li, Z. M. Lu and H. Li, Int. J. Mod. Phys. C 26, 1550028 (2015)]. Finally, we discuss the relation between the topological structure and the multiplicity of two special eigenvalues and the computational complexity of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call