Abstract

An effective optimization approach to the inverse design problems of complex fiber Bragg grating filters is developed in the present paper. Based on a multi-objective evolutionary programming (MOEP) algorithm, the proposed method can efficiently search for optimal solutions and simultaneously take into account various requirements of the designed filter. To improve the efficiency of the MOEP based algorithm, an adaptive mutation process is proposed and verified. One of the advantages of the proposed optimization method is the capability to impose additional constrains on the desired coupling coefficient, which ensures the convenience and possibility for actually fabricating the designed devices with the commercially available photosensitive fibers. To verify the effectiveness of the proposed method, an optimal narrowband dispersionless fiber Bragg grating filter for DWDM optical fiber communication systems is designed. We successfully demonstrate that complicated dispersionless FBG filters with short grating lengths and smooth dispersion profiles can be obtained by using the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call