Abstract
The effect of the calcium and oxygen contents of a hyperkalemic glucose-containing cardioplegic solution on myocardial preservation was examined in the isolated working rat heart. The cardioplegic solution was delivered at 4 degrees C every 15 minutes during 2 hours of arrest, maintaining a myocardial temperature of 8 degrees +/- 2 degrees C. Hearts were reperfused in the Langendorff mode for 15 minutes and then resumed the working mode for a further 30 minutes. Groups of hearts were given the oxygenated cardioplegic solution containing an ionized calcium concentration of 0, 0.25, 0.75, or 1.25 mmol/L or the same solution nitrogenated to reduce the oxygen content and containing 0 or 0.75 mmol ionized calcium per liter. The myocardial adenosine triphosphate concentrations at the end of arrest in these six groups of hearts were 15.6 +/- 1.2, 9.5 +/- 0.5, 8.2 +/- 1.1, 4.9 +/- 1.8, 10.1 +/- 2.0, and 1.6 +/- 0.4 nmol/mg dry weight, respectively. At 5 minutes of working reperfusion, the percentages of prearrest aortic flow were 80 +/- 2, 62 +/- 4, 33 +/- 6, 37 +/- 5, 48 +/- 7 and 46 +/- 8, respectively. The differences among the groups in adenosine triphosphate concentrations and in functional recovery diminished during reperfusion. In hearts given the hypoxic calcium-containing solution, there was a marked increase in coronary vascular resistance during the administration of successive doses of cardioplegic solution, which was rapidly reversible upon reperfusion. These data indicate that hearts given the acalcemic oxygenated solution had better adenosine triphosphate preservation during arrest and better functional recovery than hearts in any other group. Addition of calcium to the oxygenated cardioplegic solution decreased adenosine triphosphate preservation and functional recovery. Oxygenation of the acalcemic solution increased adenosine triphosphate preservation and functional recovery. The lowest adenosine triphosphate levels at end arrest were observed in hearts given the hypoxic calcium-containing solution. In the setting of hypothermia and multidose administration, the addition of calcium to a cardioplegic solution resulted in increased energy depletion during arrest and depressed recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.