Abstract

This article presents a computational framework to efficiently generate feasible and safe trajectories for multiple autonomous vehicle operations. We formulate the optimal motion planning problem as a continuous-time optimal control problem, and approximate its solutions in a discretized setting using Bernstein polynomials. The latter possess convenient properties that allow to efficiently compute and enforce constraints along the vehicles' trajectories, such as maximum speed and angular rates, minimum distance between trajectories and between the vehicles and known obstacles, etc. Thus, the proposed method is particularly suitable for generating trajectories in real-time for safe operations in complex environments and multiple vehicle missions. We show, using a rigorous mathematical framework, that the solution to the discretized optimal motion planning problem converges to that of the continuous-time one. The advantages of the proposed method are investigated through numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.