Abstract

Brain-Computer Interface (BCI) systems are traditionally designed by taking into account user-specific data to enable practical use. More recently, subject independent (SI) classification algorithms have been developed which bypass the subject specific adaptation and enable rapid use of the system. A brain switch is a particular BCI system where the system is required to distinguish from two separate mental tasks corresponding to the on-off commands of a switch. Such applications require a low false positive rate (FPR) while having an acceptable response time (RT) until the switch is activated. In this work, we develop a methodology that produces optimal brain switch behavior through subject specific (SS) adaptation of: a) a multitrial prediction combination model and b) an SI classification model. We propose a statistical model of combining classifier predictions that enables optimal FPR calibration through a short calibration session. We trained an SI classifier on a training synchronous dataset and tested our method on separate holdout synchronous and asynchronous brain switch experiments. Although our SI model obtained similar performance between training and holdout datasets, 86% and 85% for the synchronous and 69% and 66% for the asynchronous the between subject FPR and TPR variability was high (up to 62%). The short calibration session was then employed to alleviate that problem and provide decision thresholds that achieve when possible a target FPR=1% with good accuracy for both datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.