Abstract

This article proposes frequentist multiple-equation least-squares averaging approaches for multistep forecasting with vector autoregressive (VAR) models. The proposed VAR forecast averaging methods are based on the multivariate Mallows model averaging (MMMA) and multivariate leave-h-out cross-validation averaging (MCVAh) criteria (with h denoting the forecast horizon), which are valid for iterative and direct multistep forecast averaging, respectively. Under the framework of stationary VAR processes of infinite order, we provide theoretical justifications by establishing asymptotic unbiasedness and asymptotic optimality of the proposed forecast averaging approaches. Specifically, MMMA exhibits asymptotic optimality for one-step-ahead forecast averaging, whereas for direct multistep forecast averaging, the asymptotically optimal combination weights are determined separately for each forecast horizon based on the MCVAh procedure. To present our methodology, we investigate the finite-sample behavior of the proposed averaging procedures under model misspecification via simulation experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.