Abstract
Multi-hop relaying is an important concept in future generation wireless networks. It can address the inherent problems of limited capacity and coverage in cellular networks. However, most multi-hop relaying architectures are designed based on a small fixed-cell-size and a dense network. In a sparse network, the throughput and call acceptance ratio degrades because distant mobile nodes cannot reach the base station to use the available capacity. In addition, a fixed-cell-size cannot adapt to the dynamic changes of traffic pattern and network topology. In this paper, we propose a novel multi-hop relaying architecture called the adaptive multi-hop cellular architecture (AMC). AMC adapts the cell size to an optimal value that maximizes throughput by taking into account the dynamic changes of network density, traffic patterns, and network topology. To the best of our knowledge, this is the first time that adaptive (or optimal) cell size is accounted for in a multi-hop cellular environment. AMC also achieves the design goals of a good multi-hop relaying architecture. Simulation results show that AMC outperforms a fixed-cell-size multi-hop cellular architecture and a single-hop case in terms of data throughput, and call acceptance ratio
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.