Abstract
Multi-focus image fusion is becoming increasingly prevalent, as there is a strong initiative to maximize visual information in a single image by fusing the salient data from multiple images for visualization. This allows an analyst to make decisions based on a larger amount of information in a more efficient manner because multiple images need not be cross-referenced. The contourlet transform has proven to be an effective multi-resolution transform for both denoising and image fusion through its ability to pick up the directional and anisotropic properties while being designed to decompose the discrete two-dimensional domain. Many studies have been done to develop and validate algorithms for wavelet image fusion, but the contourlet has not been as thoroughly studied. When the contourlet coefficients for the wavelet coefficients are substituted in image fusion algorithms, it is contourlet image fusion. There are a multitude of methods for fusing these coefficients together and the results demonstrate that there is an opportunity for fusing coefficients together in the contourlet domain for multi-focus images. This paper compared the algorithms with a variety of no reference image fusion metrics including information theory based, image feature based and structural similarity based assessments to select the image fusion method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.