Abstract

The problem of determining multicommodity flows over a capacitated network subject to resource constraints may be solved by linear programming; however, the number of potential vectors in most applications is such that the standard arc-chain formulation becomes impractical. This paper describes an approach—an extension of the column generation technique used in the multicommodity network flow problem—that simultaneously considers network chain selection and resource allocation, thus making the problem both manageable and optimal. The flow attained is constrained by resource availability and network capacity. A minimum-cost formulation is described and an extension to permit the substitution of resources is developed. Computational experience with the model is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.