Abstract

In this work, two aspects of motion planning for object reconstruction are investigated. First, the effect of using a sampling-based optimal motion planning technique to move a mobile manipulator robot with 8 degrees of freedom, during the reconstruction process, in terms of several performance criteria is studied. Based on those criteria, the results of the reconstruction task using rapidly exploring random tree (RRT) approaches are compared, more specifically RRT* smart versus RRT* versus standard RRT. Second, the problem of defining a convenient stopping probabilistic test to terminate the reconstruction process is addressed. Based on our results, it is concluded that the use of a RRT* improves the measured performance criteria compared with a standard RRT. The simulation experiments show that the proposed stopping test is adequate. It stops the reconstruction process when all the portions of object that are possible to be seen have been covered with the field of view of the sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.