Abstract

The multi-agent monitoring (surveillance) problem over graphs is to find trajectories of multiple agents that travel each node as evenly as possible. This problem has several applications such as city safety management and disaster rescue. in our previously proposed method, the finite-time optimal surveillance problem was formulated, and was reduced to a mixed integer linear programming (MILP) problem. Based on the policy of model predictive control, an optimal trajectory is generated by solving the MlLP problem at each discrete time. However, the computation time for solving the MlLP problem is frequently long. in this paper, to reduce the computation time of the MlLP problem, a modeling method of graphs is proposed. in this method, the adjacency relation is time varying depending on the current position of agents. Since redundant arcs are eliminated, the computation time is improved. The effectiveness of the proposed method is demonstrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.