Abstract

Application of linked simulation-optimization approach for solving groundwater identification problems is well established. Pollutant concentration measurements from different sets of monitoring locations, when used in a linked simulation-optimization approach, results in different degrees of accuracy of source identification. Moreover, the accuracy of source identification results depends on the number and spatiotemporal locations of pollutant concentrations measurements. This study aims at improving the accuracy of source identification results, by using concentration measurements from an optimally designed monitoring network. A linked simulation optimization based methodology is used for optimal source identification. Genetic programming based impact factor is used for designing the optimal monitoring network. Concentration measurement data from the designed network is then used, in the Simulated Annealing based linked simulation-optimization model for efficient source identification. The potential application of the developed methodology is demonstrated by evaluating its performance for an illustrative study area. These performance evaluation results show improvement in the efficiency in source identification when such designed monitoring networks are utilized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.