Abstract
Une procédure de pénalisation en sélection de modèle repose sur la construction d’une forme pour la pénalité ainsi que sur le choix d’une constante de calibration. Dans cet article, nous étudions, pour le problème d’estimation de la densité, les pénalités obtenues par rééchantillonnage de pénalités idéales. Nous montrons l’efficacité de ces procédures pour l’estimation de la forme des pénalités en prouvant, pour les estimateurs sélectionnés, des inégalités d’oracle fines sans termes résiduelles; les résultats sont valides sous des hypothèses faibles à la fois sur la densité inconnue $s$ et sur les collections de modèles. Ces pénalités sont de plus faciles à calibrer puisque la constante asymptotiquement optimale peut être calculée en fonction des poids de rééchantillonnage. En pratique, le nombre de données est toujours fini, nous étudions donc également l’heuristique de pente et justifions l’algorithme de pente qui permet de calibrer la constante de calibration à partir des données.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.