Abstract

This paper proposes a design of a direct optimal control for a class of multi-input–multi-output (MIMO) nonlinear systems. This work focuses on the design of optimal model-free backstepping controller for a MIMO quadrotor helicopter perturbed by unknown external disturbances. The proposed method consists of using a model-free-based backstepping controller optimized by a cuckoo search algorithm. First, the overall dynamic model is decoupled into six interconnected subsystems. Then, the ideal backstepping controller with a known dynamic function is designed for each subsystem. The model-free based on backstepping control uses a new estimator approach to approximate the unknown dynamic model functions. After that, the global asymptotical stability of the closed-loop control system is proved via the Lyapunov theory. Moreover, the parameters of the proposed controller are optimized by the cuckoo search algorithm according to a cost function. The results of numerical simulations applied to the quadrotor helicopter system demonstrate the robustness and the effectiveness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call