Abstract

The capacity of the MIMO channel taking into account both a limitation on total consumed power, and per-antenna radiated power constraints is considered. The total consumed power takes into account the traditionally used sum radiated power, and also the power dissipation in the amplifiers. For a fixed channel with full CSI at both the transmitter and the receiver, maximization of the mutual information is formulated as an optimization problem. Lower and upper bounds on the capacity are provided by numerical algorithms based on partitioning of the feasible region. Both bounds are shown to converge and give the exact capacity when number of regions increases. The bounds are also used to construct a monotonic optimization algorithm based on the branch-and-bound approach. An efficient suboptimal algorithm based on successive convex approximation performing close to the capacity is also presented. Numerical results show that the performance of the solution obtained from the suboptimal algorithm is close to that of the global optimal solution. Simulation results also show that in the low SNR regime, antenna selection provides performance that is close to the optimal scheme while at high SNR, uniform power allocation performs close to the optimal scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.