Abstract

Synthetic lethality offers a promising strategy for cancer treatment by targeting genetic vulnerabilities unique to tumor cells, leading to selective tumor cell death. However, single-gene knockout screens often miss functional redundancy due to paralog genes. Multiplex CRISPR systems, including various Cas9 and Cas12a platforms, have been developed to assay genetic interactions, yet no systematic comparison of method to identify synthetic lethality from CRISPR screens has been conducted. We evaluated data from four in4mer CRISPR/Cas12a screens in cancer cell lines, using three bioinformatic approaches to identify synthetic lethal interactions: delta log fold change (dLFC), Z-transformed dLFC (ZdLFC), and rescaled dLFC (RdLFC). Both ZdLFC and RdLFC provided more consistent identification of synthetic lethal pairs across cell lines compared to the unscaled dLFC method. The ZdLFC method offers a robust framework for scoring synthetic lethal interactions from paralog screens, providing consistent results across different cell lines without requiring a training set of known positive interactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.