Abstract

In this study, we propose an optimal method for monitoring the key electrophysiological sign, the Lateral Spread Response (LSR), during microvascular decompression (MVD) surgery for hemifacial spasm (HFS). Current monitoring methods and interpretations of LSR remain unclear, leading to potential misinterpretations and undesirable outcomes." We prospectively collected data from patients undergoing MVD for HFS, including basic demographics, clinical characteristics, and surgical outcomes. Stimulation intensity was escalated by 1 mA increments to identify the optimal range for effective LSR. We designated the threshold at which we can observe LSR as THR1 and THR2 for when LSR disappears, with high-intensity stimulation (30 mA) designated as THR30. Subsequently, we compared abnormal muscle responses (AMR) between the optimal range (between THR1 and THR2) and THR30. Additionally, we conducted an analysis to identify and assess factors associated with artifacts and their potential impact on clinical outcomes. As stimulation intensity increases, the onset latency to detect AMR was shortened. The first finding of the study was high intensity stimulation caused artifact that mimic the wave of LSR. Those artifacts were observed even after decompression thus interfere interpretation of disappearance of LSR. Analyzing the factors related to the artifact, we found the AMR detected at onset latency below 9.6 ms would be the lateral spreading artifact (LSA) rather than true LSR. To avoid false positive LSR from LSA, we should stepwise increase stimulation intensity and not to surpass the intensity that cause LSR onset latency below 10 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call