Abstract
Fifth-generation technologies have reached a stage where it is now feasible to consider deployments that extend beyond traditional public networks. Central to this process is the application of Fixed Wireless Access (FWA) in 5G Non-public Networks (NPNs) that can utilise a novel combination of radio technologies to deploy an infrastructure on top of 5G NR or entirely from scratch. However, the use of FWA backhaul faces many challenges in relation to the trade-offs for reduced costs and a relatively simple deployment. Specifically, the use of meshed deployments is critical as it provides resilience against a temporary loss of connectivity due to link errors. In this paper, we examine the use of meshing in a FWA backhaul to determine if an optimal trade-off exists between the deployment of more nodes/links to provide multiple paths to the nearest Point of Presence (POP) and the performance of the network. Using a real 5G NPN deployment as a basis, we have conducted a simulated analysis of increasing network densities to determine the optimal configuration. Our results show a clear advantage for meshing in general, but there is also a performance trade-off to consider between overall network throughput and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.