Abstract

The aim was to determine the respective influences of sprinting maximal power output ( ) and mechanical Force-velocity (F-v) profile (ie, ratio between horizontal force production capacities at low and high velocities) on sprint acceleration performance. A macroscopic biomechanical model using an inverse dynamics approach applied to the athlete's center of mass during running acceleration was developed to express the time to cover a given distance as a mathematical function of and F-v profile. Simulations showed that sprint acceleration performance depends mainly on , but also on the F-v profile, with the existence of an individual optimal F-v profile corresponding, for a given , to the best balance between force production capacities at low and high velocities. This individual optimal profile depends on and sprint distance: the lower the sprint distance, the more the optimal F-v profile is oriented to force capabilities and vice versa. When applying this model to the data of 231 athletes from very different sports, differences between optimal and actual F-v profile were observed and depend more on the variability in the optimal F-v profile between sprint distances than on the interindividual variability in F-v profiles. For a given sprint distance, acceleration performance (<30m) mainly depends on and slightly on the difference between optimal and actual F-v profile, the weight of each variable changing with sprint distance. Sprint acceleration performance is determined by both maximization of the horizontal power output capabilities and the optimization of the mechanical F-v profile of sprint propulsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.