Abstract

We analyze the optimal measurements accessing classical correlations in arbitrary two-qubit states. Two-qubit states can be transformed into the canonical forms via local unitary operations. For the canonical forms, we investigate the probability distribution of the optimal measurements. The probability distribution of the optimal measurement is found to be centralized in the vicinity of a specific von Neumann measurement, which we call the maximal-correlation-direction measurement (MCDM). We prove that for the states with zero-discord and maximally mixed marginals, the MCDM is the very optimal measurement. Furthermore, we give an upper bound of quantum discord based on the MCDM, and investigate its performance for approximating the quantum discord.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.