Abstract

The optimal mean-reverting portfolio (MRP) design problem is an important task for statistical arbitrage, also known as pairs trading, in the financial markets. The target of the problem is to construct a portfolio of the underlying assets (possibly with an asset selection target) that can exhibit a satisfactory mean reversion property and a desirable variance property. In this paper, the optimal MRP design problem is studied under an investment leverage constraint representing the total investment positions on the underlying assets. A general problem formulation is proposed by considering the design targets subject to a leverage constraint. To solve the problem, a unified optimization framework based on the successive convex approximation method is developed. The superior performance of the proposed formulation and the algorithms are verified through numerical simulations on both synthetic data and real market data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.