Abstract

The full description of a two-stage speed reducer generally requires a large number of design variables (typically, well over ten), resulting a very large and heavily constrained design space. This paper presents the specific case of the complete automated optimal design with Genetic Algorithms of a two-stage helical coaxial speed reducer. The objective function (i.e. the mass of the entire speed reducer) was described by a set of 17 mixed design variables (i.e. integer, discrete and real) and also was subjected to 76 highly non-linear constraints. It can be observed that the proposed Genetic Algorithm offers better design solutions as compared with the results obtained by using the traditional design method (i.e. a commonly trial and cut error).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.