Abstract

In this paper the problem of the synthesis of optimal manoeuver trajectories for autonomous space vehicles and robots is revisited. It is shown that it is entirely feasible to construct optimal manoeuver trajectories from considerations of only the rigid body kinematics rather than the complete dynamics of the space vehicle or robot under consideration. Such an approach lends itself to several simplifications which allow the optimal angular velocity and translational velocity profiles to be constructed, purely from considerations of the body kinematic relations. In this paper the body kinematics is formulated, in general, in terms of the quaternion representation attitude and the angular velocities are considered to be the steering inputs. The optimal inputs for a typical attitude manoeuver is synthesized by solving for the states and co-states defined by a two point boundary value problem. A typical example of a space vehicle pointing problem is considered and the optimal torque inputs for the synthesis of a reference attitude trajectory and the reference trajectories are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.