Abstract

Southwestern U.S. pecan [Carya illinoinensis (Wangenh.) K. Koch] orchard soils are typically alkaline and calcareous, making micronutrients such as manganese (Mn) poorly available for root uptake. Manganese is essential to the light reactions of photosynthesis (Pn), but the level of leaf Mn for optimum Pn in pecan is unknown. Our objective was to characterize the relationships of foliar Mn fertilizer applications and leaf Mn nutrition with Pn over a broad range of leaf Mn concentrations. Two experiments were conducted from 2011 to 2012 (Expt. 1) and in 2013 (Expt. 2) in immature, nonbearing ‘Pawnee’ and ‘Western’ pecan orchards near Las Cruces, NM. To create differential leaf tissue Mn concentrations, four Mn spray concentrations were applied foliarly: 0.00, 0.34, 0.68, and 1.3 g Mn/L (Control, Low, Medium, and High, respectively). In Expt. 2, we added a higher Mn concentration (2.7 g Mn/L). Repeated measurements of leaf Pn were made beginning 1 week following a Mn application using a portable Pn system. Across treatments in both studies, final leaf Mn concentrations ranged from 21 to 1488 µg·g−1. Leaves treated with 0.68 g Mn/L had higher Pn than the other treatments in each experiment. In 2013, Pn rates of the leaves treated with 0.68 g Mn/L increased 7.1% and 10.4% over the Control for ‘Pawnee’ and ‘Western’, respectively. Our data confirm an association between leaf tissue Mn and Pn; the leaf tissue Mn concentration at which Pn rates are optimized in immature pecan trees was estimated to be 151.64 (±17.3 se) µg·g−1 Mn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call