Abstract

We present a novel technique to solve the problem of managing optimally a pumped hydroelectric storage system. This technique relies on representing the system as a stochastic optimal control problem with state constraints, these latter corresponding to the finite volume of the reservoirs. Following the recent level-set approach presented in O. Bokanowski, A. Picarelli, H. Zidani, State-constrained stochastic optimal control problems via reachability approach, SIAM J. Control and Optim. 54 (5) (2016), we transform the original constrained problem in an auxiliary unconstrained one in augmented state and control spaces, obtained by introducing an exact penalization of the original state constraints. The latter problem is fully treatable by classical dynamic programming arguments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.