Abstract
A simulation model for part of the Mississippi River Valley alluvial aquifer in the Cache area, Arkansas, was coupled with an optimization model to determine maximum optimal pumping from irrigation wells in the areas where cones of depression exist. Groundwater Vistas and Groundwater Management software were used for simulation and optimization model, respectively. The Cache area was designated as a critical groundwater area in 2009 due to the decline in its water level to below 50 % of the saturated thickness of the aquifer. The optimization model was formulated with the objective of maximizing water production from wells subjected to minimum head constraints and drawdown constraints, while limiting groundwater withdrawals to a maximum of 100 and 200 % of the rate pumped in 2010. Four different sets of managed wells were tested in Scenarios 1, 3 (938 wells) and Scenarios 2, 4 (3870 wells). The optimal pumping rates from groundwater in the case of minimum head constraints were 0.59 and 2.43 Mm3/d for Scenarios 1 and 2, respectively. In the case of maximum pumping constraints of the managed wells specified as 200 % of the pumping rate of 2010, the optimal pumping rates from groundwater in the case of minimum head constraints were 0.88 and 3.28 Mm3/d for Scenarios 3 and 4, respectively. The average optimal pumping increased by 6–49 % in the case of the maximum pumping constraint specified as 200 % of the pumping rate of the year 2010.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Water Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.