Abstract

In the present paper, a system with components subject to soft and hard failures is considered. It is assumed that hard failures are revealed and fixed immediately and present an additional opportunity for inspection (opportunistic inspection), but soft failures are hidden and only corrected at periodic inspections. The objective is to find the optimal maintenance policy for all components and the optimal periodic inspection for the entire system. Two models are considered in this context. In the first model, hard-type and soft-type components are subject to minimal repair or corrective replacement, and soft-type components undergo opportunistic inspections. In the second model, in addition to the assumptions of the first model, hard-type components may be preventively replaced at periodic inspections. In our models, we base the maintenance decision for the soft-type components on the optimal number of minimal repairs until replacement, and for the hard-type components – on the optimal age before replacement. A recursive equation is provided for deriving the required expected values. Hidden failures preclude us from expressing the terms of the objective function in closed form. For this reason, the optimal periodic inspection interval for the system minimizing its total expected life cycle cost is found for both models using simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call