Abstract
Lattice Boltmzann Methods (LBM) have been proved to be very effective methods for computational aeroacoustics (CAA), which have been used to capture the dynamics of weak acoustic fluctuations. In this paper, we propose a strategy to reduce the dispersive and disspative errors of the two-dimensional (2D) multi-relaxation-time lattice Boltzmann method (MRT-LBM). By presenting an effective algorithm, we obtain a uniform form of the linearized Navier–Stokes equations corresponding to the MRT-LBM in wave-number space. Using the matrix perturbation theory and the equivalent modified equation approach for finite difference methods, we propose a class of minimization problems to optimize the free-parameters in the MRT-LBM. We obtain this way a dispersion-relation-preserving LBM (DRP-LBM) to circumvent the minimized dispersion error of the MRT-LBM. The dissipation relation precision is also improved. And the stability of the MRT-LBM with the small bulk viscosity is guaranteed. Von Neuman analysis of the linearized MRT-LBM is performed to validate the optimized dispersion/dissipation relations considering monochromatic wave solutions. Meanwhile, dispersion and dissipation errors of the optimized MRT-LBM are quantitatively compared with the original MRT-LBM. Finally, some numerical simulations are carried out to assess the new optimized MRT-LBM schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.