Abstract

A lithium-plating side reaction at the lithiated graphite (LiC6) anode leads to poor safety of the lithium-ion battery. Faster charging at normal temperature may lead to a plating side reaction during the end of charging at the anode-separator interface. At lower temperature, the lithium-plating side reaction may become thermodynamically favorable during almost the entire charging period, even at low rates. This paper uses an electrochemical engineering model and dynamic optimization framework to derive charging profiles to minimize lithium plating at low temperatures. Transport parameters for lithium-ion battery are very sensitive at low temperatures. This paper shows the derivation of the optimal charging profile considering strict lower bounds on the plating reaction depending on various thermal insulation conditions (adiabatic, isothermal, and normal heat transfer coefficient) surrounding the battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.