Abstract

We consider a financial market model driven by an Rn-valued Gaussian process with stationary increments which is different from Brownian motion. This driving-noise process consists of n independent components, and each component has memory described by two parameters. For this market model, we explicitly solve optimal investment problems. These include: (i) Merton's portfolio optimization problem; (ii) the maximization of growth rate of expected utility of wealth over the infinite horizon; (iii) the maximization of the large deviation probability that the wealth grows at a higher rate than a given benchmark. The estimation of parameters is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.