Abstract

The recent COVID-19 crisis has revealed the urgent need to study the impact of an infectious disease on market economies and provide adequate policy recommendations. The present paper studies the optimal lockdown policy in a dynamic general equilibrium model where households are altruistic and they care about the share of infected individuals. The spread of the disease is modeled here using SIS dynamics, which implies that recovery does not confer immunity. To avoid non-convexity issues, we assume that the lockdown is constant in time. This strong assumption allows us to provide analytical solutions. We find that the zero lockdown is efficient when agents do not care about the share of infected, while a positive lockdown is recommended beyond a critical level of altruism. Moreover, the lockdown intensity increases in the degree of altruism. Our robust analytical results are illustrated by numerical simulations, which show, in particular, that the optimal lockdown never trespasses 60% and that eradication is not always optimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.